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Abstract

In this paper we describe K-Space participation in
TRECVid 2007. K-Space participated in two tasks, high-
level feature extraction and interactive search. We present
our approaches for each of these activities and provide a
brief analysis of our results.

Our high-level feature submission utilized multi-modal
low-level features which included visual, audio and tempo-
ral elements. Speci�c concept detectors (such as Face de-
tectors) developed by K-Space partners were also used. We
experimented with di�erent machine learning approaches
including logistic regression and support vector machines
(SVM). Finally we also experimented with both early and
late fusion for feature combination.

This year we also participated in interactive search, sub-
mitting 6 runs. We developed two interfaces which both
utilized the same retrieval functionality. Our objective w as
to measure the e�ect of context, which was supported to
di�erent degrees in each interface, on user performance.
The �rst of the two systems was a `shot' based interface,
where the results from a query were presented as a ranked
list of shots. The second interface was `broadcast' based,
where results were presented as a ranked list of broadcasts.
Both systems made use of the outputs of our high-level fea-
ture submission as well as low-level visual features.

1 Overview of K-Space

K-Space is a European Network of Excellence (NoE) in
semantic inference for semi-automatic annotation and re-
trieval of multimedia content [1] which is in the second year
of its three year funding. It is coordinated by Queen Mary
University of London (QMUL) and the partner responsible
for coordinating the K-Space participation in TRECVid is
Dublin City University. K-Space is focused on the research
and convergence of three themes: content-based multime-
dia analysis, knowledge extraction and semantic multime-
dia.

This paper describes the K-Space participation in
TRECVid 2007. TRECVid ([39]) is an annual benchmark-
ing evaluation campaign for research groups to use com-
mon data and queries to assess the relative performance
of their techniques in an open, metrics-based forum. 2007
marks the 7th year of TRECVid.

2 Audio-Visual Features

The K-Space submission in both feature detection and
interactive search made use of several feature detectors
developed by K-Space partners in prior work. Later in

this section we outline the speci�c concept detectors con-
tributed by individual K-Space partners used during K-
Space participation in TRECVid 2007. First, though, we
present some detail on the low-level visual features used.
For the remainder of this paper, the term `concept' will
refer to a high-level feature (e.g. `Car').

As no common keyframe set was released as part of the
TRECVid 2007 collection, we extracted our own set of
keyframes. Our keyframe selection strategy was to ex-
tract every second I-Frame from each shot. This gives us
far more keyframes than the usual one-keyframe-per-shot
which has been the norm in previous TRECVids and in
fact gives us about 1 keyframe per second of video. For
the remainder of this paper, we will refer to these images
as K-Frames.

We extracted low-level visual features from K-frames us-
ing several feature descriptors based on the MPEG-7 XM.
These descriptors were implemented as part of the aceTool-
box, a toolbox of low-level audio and visual analysis tools
developed as part of our participation in the EU aceMedia
project [2]. We made use of six di�erent global visual de-
scriptors. These descriptors were Colour Layout, Colour
Moments, Colour Structure, Homogenous Texture, Edge
Histogram and Scalable Colour. A complete description
of each of these descriptors can be found in [24].

We also segmented each of the K-frames into regions.
We considered several approaches to image segmentation
[3], [18], [7], [23], when selecting the method for automat-
ically partitioning K-frames into large regions which re-
ect the objects (or their parts) present in the image. We
considered not only the accuracy of segmented regions in
terms of how well they mapped to object, but also the typ-
ical number of regions produced by a given algorithm and
its computational cost to execute. The number of regions
was a particularly relevant factor since large regions are
typically more suited to subsequent robust feature estima-
tion.

We decided to use the approach proposed in [3] which
is based on the well known Recursive Shortest Spanning
Tree (RSST) method utilizing the more perceptually uni-
form L*U*V* color model and syntactic visual features
to improve the quality of the segmentation. The syntac-
tic features represent geometric properties of regions and
their spatial con�gurations. This approach allowed satis-
factory segmentation of various types of scenes into a set of
large and typically meaningful regions without adjustment
to algorithm parameters.

This set of K-frames and their features and regions were
distributed to all K-Space TRECVid partners so that each
could run their own feature detectors on the video and send
the output back to DCU for coordination. The remainder
of this section describes the partner contributions.



2.1 Institute EUR �ECOM

The Eur�ecom system for the high level features extrac-
tion task was responsible for six semantic concepts within
the K-Space project (sports, outdoor, building, mountain,
waterscape, maps). The Eur�ecom approach is based on a
multi-descriptor system. The following 4 experiments were
submitted to the collaborative system:

� Run 1: MPEG-7 global descriptors,

� Run 2: MPEG-7 region descriptors using the region
based automatic segmentation method RBAS (A re-
gion merging approach incorporating geometric prop-
erties [4]),

� Run 3: Color and texture descriptors were extracted
using three segmentation methods (A �xed image
grid, watersheds [42] and a technique based on mini-
mum spanning trees MST[17]),

� Run 4: Combination of global and regions descriptors.

These descriptors were then introduced in separate SVM
classi�cation systems (one classi�er per feature) trained
using the �rst half of the development data set. The fu-
sion of classi�ers outputs was �nally provided by training
a neural network based on evidence theory [10] on the sec-
ond half of the training data. More details about this
entire framework and its performance can be found in the
notebook paper [9].

2.2 GET

GET features used in TRECVid 2007 are the outputs of a
face detection module and an audio classi�cation module
which are described below.

2.2.1 Face detection

Face detection is performed thanks to the fusion of the
results of two di�erent systems. The �rst one, the classic
Viola and Jones algorithm [44] is based on the estimation
of a \strong" classi�er composed of a cascade of many weak
classi�ers, each of these weak classi�ers being attached to
a particular Haar feature. A classi�er dedicated to frontal
faces and a second one dealing with pro�le faces have been
applied.

The second system may be considered as a probabilis-
tic equivalent of the Viola and Jones method [16]. While
this system still relies on the estimation of a strong classi-
�er, the di�erence is that the underlying classi�er functio n
is then used to estimate the distribution of the object of
interest (faces in our case), that is to model the genera-
tion of such objects within images (such a model is called

a \ generative model"). As this distribution is computed,
many partitions of the input images are considered and the
patches they are composed of are assigned a label (\object
of interest" versus \background") depending on the esti-
mation of likelihoods.

The results of these systems (bounding boxes) are fused
thanks to geometric constraints considering the size of the
bounding boxes and regarding overlaps between bounding
boxes produced by di�erent systems.

In order to reduce the number of false alarms, a colour
�lter (concerning chrominance channels in the YCrCb
colour space) was applied. Values of this �lter are derived
from [28]. As such a �lter would not perform e�ciently on
graylevel-like video frames (still shot on a graylevel pic-
ture, : : :), we do not apply it on such frames using a list
of graylevel-like frames provided by DCU.

2.2.2 Audio classi�cation

The audio classi�cation system developed is able to dis-
criminate 17 di�erent classes of sound, namely clean
speech, noisy speech, music, music and speech, si-
lence/pause and various environmental sounds (i.e. air-
plane, helicopter, applause, crowds, dogs, explosion, gun-
shot, car, race-car, siren, truck/lorry/bus, motorcycle) . It
relies on an e�cient subset of 40 audio features which was
obtained by automatic feature selection [20] from a wide
set of candidate features (most of which are described in
[15, 27]). The feature selection technique used is inertia
ratio maximisation [26]. Features are extracted over 32-
ms length overlapping analysis windows with a 50% hop-
size. Temporal feature integration is used whereby features
are temporally averaged over 0.5-s length texture windows.
The actual classi�cation is performed thanks to one-class
Support Vector Machines following the approach presented
in [35]. The fraction of each class positive outputs over a
video shot length are then used as audio features.

2.3 ITI

In this section the approach followed for the detection of
10 high-level features by ITI is described. Two high-level
concept detection approaches were applied. The �rst by
ITI for the detection of Building, Car and Waterscape-
Waterfront , and the latter by the National technological
University of Athens (NTUA), for the detection of Desert,
Road, Sky, Snow, Vegetation, Explosion/Fire and Moun-
tain. In order to detect the aforementioned high-level fea-
tures, the following MPEG-7 descriptors, which were ex-
tracted from all the available K-Frame keyframes, are used:
Scalable Color, Homogeneous Texture, Edge Histogramand
Color Layout.

Within the ITI approach, a Support Vector Machines



(SVM) structure is utilized to detect instances of the fea-
tures of concern. This comprises 3 individual SVMs, one
for every feature, each trained under the òne-class' ap-
proach [37]. After extensive experimentation, a poly-
nomial function was used as a kernel function by each
SVM. For the purpose of training the SVMs, the com-
mon TRECVID annotations [5] were employed. Then, for
every keyframe the extracted, low-level descriptors were
combined and their values were normalized to the inter-
val [� 1; 1]. The latter constitute the input to each SVM,
which at the evaluation stage returns for every keyframe a
numerical value in the range [0; 1]. This value denotes the
degree of con�dence to which the corresponding keyframe
is assigned the high-level feature associated with the par-
ticular SVM. The metric adopted is de�ned as follows: For
every input sample the distancez from the corresponding
SVM's separating hypersphere is initially calculated. This
distance is positive in cases of positive sample detection
and negative otherwise. Then, a sigmoid function [41] is
employed to compute the respective degree of con�dence,
h, as follows:

h =
1

1 + e� t �z (1)

where the slope parametert is experimentally set. The
SVM structure employed for high-level features detection,
was realized using the SVM software libraries of [13].

Within the NTUA approach [40], all images were �rstly
segmented using a coarse segmentation algorithm, tuned
to produce coarse segments. The aforementioned MPEG-7
descriptors were then extracted from each region. Then,
K-means clustering is performed on the descriptions of all
regions of the training set. After some experiments, the
number of K is set to 100. Then, each cluster may or
may not represent a high-level feature and each high-level
feature may be represented by one or more clusters.

From each of the formed clusters, the region that lies
closest to the centroid is selected and will be referred to
as the \Region Type". An image will then be described
semantically in terms of the region types it is composed
of. Next, for each one of the keyframes, a model vec-
tor is formed. More speci�cally, let: d1

i ; d2
i ; :::; dj

i ; i =
1; 2; : : : ; NR and j = NC , where NC denotes the number
of region types, NR the number of the regions within the
image anddj

i is the distance of thei -th region of the image
to the j -th region type. The model vector Dm is formed
in the way depicted in equation 2.

Dm =
h
min f d1

i g; min f d2
i g; :::; min f dN C

i g
i

; i = 1 ; 2; : : : ; NR

(2)
For each semantic concept, a separate neural network-
based detector was trained. Its input was the model vector
and the output represents the distance of each region to

the corresponding semantic concept. For the training of
these detectors the common annotation has been used.

2.4 JRS

In the feature extraction task, JRS contributed with the
extraction of a number of visual indexes, as described in
the following.

The extraction algorithm for camera motion is the same
that we used for the TRECVID 2005 camera motion task
[8]. It is based on feature tracking using the Lucas-Kanade
tracker, which is a compromise between spatially detailed
motion description and performance. The feature trajecto-
ries were then clustered by similarity in terms of a motion
model. The clustering algorithm is an iterative approach
of estimating a motion parameter sequence for a set of
trajectories and the re-assigning trajectories to the best
matching parameter sequence. The cluster representing
the global motion is selected. The decision is based on
the size of the cluster and its temporal stability. Based on
the parameter sequence representing the dominant motion,
the presence of pan, zoom and tilt is detected. For one or
more segments per shot, the following types of motion are
described: pan left/right, tilt up/down, zoom in/out and
static.

The level of visual activity is computed by temporally
subsampling the video and computing the mean absolute
frame di�erences (MAFD). The description then contains
statistics about minimum, maximum, mean and median
MAFD per shot.

For each shot, the number of faces is detected on the
temporally subsampled video, by using the face detection
method implemented in OpenCV. The mode of the num-
ber of detected faces in the frames is described for each
shot. Additionally, information about the biggest face size
is given.

For calculating shot and keyframe similarity, we use four
di�erent global image features, speci�cally the MPEG-7
features [22] ColorLayout, DominantColor, ColorStructure
and EdgeHistogram. The description of each shot contains
a list of relations to similar shots.

The description of all feature extraction results is in
MPEG-7 format compliant to the Detailed Audiovisual
Pro�le (DAVP) we have speci�ed [6].

2.5 QMUL

In the feature extraction task, QMUL extracted the fol-
lowing six features: \Maps", \Sky", \Weather", \US-
Flag", \Boat/Ship" and \Vegetation". These features
were extracted by two classi�cation modules developed
within MMV group in QMUL: Particle Swarm Optimi-
sation based image classi�er and Ant Colony based image



classi�er. The feature vectors used for feature extraction
were extracted from the segmentation of video frames. A
brief introduction to each module is given as follows: the
Particle Swarm Optimisation (PSO) technique is one of
the meta-heuristic algorithms inspired by Biological sys-
tems. The image classi�cation is performed using the
Self Organising Feature Map (SOFM) and optimising the
weight of the neurons by PSO [12]. To improve the per-
formance of the classi�cation algorithm, fuzzy inference
rules are constructed along with Binary Particle Swarm to
merge the classi�cation results from multiple MPEG - 7
descriptors [11]. The rules were explicitly weighted based
on the ability of the descriptor to classify di�erent fea-
tures/concepts. The PSO based classi�er was used for ex-
traction of \Maps", \Sky" and \Weather" features. Next
module is the Ant Colony based image classi�er where the
Ant Colony Optimisation (ACO) and its learning mecha-
nism is integrated with the COP-K-Means to address im-
age classi�cation problem [29]. The COP-K-Means is a
semi-supervised variant of K-Means, where initial back-
ground knowledge is provided in the form of constraints
between instances in the dataset. The integration of ACO
with a COP-K-Means makes the classi�cation process less
dependent on the initial parameters, so that it becomes
more stable. An `ACO based classi�er was used for ex-
traction of \US-Flag", \Boat/Ship" and \Vegetation" fea-
tures. Both modules are designed to handle the very large
TRECVid dataset, considering both the classi�er perfor-
mance and the processing time.

2.6 TUB

2.6.1 Speaker change detection

The goal of the speaker change detection developed by K-
Space partner TUB, is to detect change points between
individual speakers and segment the audio stream into
nonoverlapping speaker segments. It was realized using the
Bayesian information criterion (BIC), a parametric model
selection method which was �rst proposed in [38]. To ap-
ply BIC for speaker change detection, the audio stream
was �rst divided into homogenous audio segments with a
length of 2s. A sliding window divided these audio seg-
ments into overlapping frames with a length of 40 ms and
an overlap of 20 ms. For each frame a feature vector con-
sisting of 13 mel frequency cepstral coe�cients (MFCC's)
[14] and the log energy of the frame are extracted. With
the assumption that an audio segment consisting of a set
of consecutive feature vectors is drawn from an indepen-
dent multivariate Gaussian process and contains at most
one speaker change point at a certain time, the segmenta-
tion problem can be treated as a model selection problem
between the models of two contiguous audio segments. A
frame is a good candidate segment boundary if the vari-

ation between two consecutive BIC values is larger than
0. The �nal change point decision is made via Maximum
Likelihood Estimation (MLE).

2.6.2 Optical character recognition

In a video OCR program a sequence of frames is used
for the detection of text. This sequence of frames carries
informations about moving objects and static text. This
information is not available on a single image. For example
in a soccer game the camera is moving all the time or the
players are moving, but the text with the score, time, and
teams are always on the same place in the frames. To �nd
the text in this example video it is necessary to remove all
moving objects. To remove the moving objects all frames
of one sequence are used. After the edge �lter is done,
each of these frames is used for a logical multiplication.
Thus most of the moving objects are removed and only
the static edges of the text areas are left. In this way it is
possible to detect the text regions.

2.6.3 Face detection

The goal of face detection is to detect and localize frontal
faces within the keyframes of a shot and provide some face
statistics for the subsequent fusion and search modules.
Since the images of the TRECVID 2007 data have only
a low resolution (CIF) the holistic approach proposed by
Viola & Jones [43] was adopted. In order to decrease the
number of false positives it was combined with a post�l-
tering step based on skin color probabilities. Although it
performed quite well under various controlled conditions,
a lot of real faces were discarded in uncontrolled scenar-
ios. Since the dataset contained also a lot of monochrome
sequences the post�ltering was not used for the submitted
results. So almost the same approach as described in [45]
was applied to the TRECVid 2007 data. In contrast to
TRECVid 2006 the face detection was applied only both
to the keyframes and the K-frames within a shot.

2.6.4 Audio classi�cation/segmentation

Audio classi�cation/segmentation determines temporal
audio segments. The membership of each audio segment
is given as con�dence value for the six audio classes pause,
clean speech, noisy speech, pure music, music and speech
as well as environmental sound. Almost the same approach
as described in [45] for audio classi�cation/segmentation
was applied to the audio streams of the TRECVid 2007
video data. The minor di�erence for this year is the change
of the sub-segment duration from 0.5 s to 1 s. This change
is motivated by a higher stability of results determined
by a maximum likelihood (ML) classi�cation for each sub-



segment. Finally, the audio segments are formed by joining
sub-segments that are belonging to the same audio class.

2.7 UEP

2.7.1 Latent Semantic Indexing for automated
image retrieval

Originally, Latent Semantic Indexing (LSI) [19] was de-
veloped for retrieval of large amounts of text documents
especially because of di�culties in e�ective matching of
terms due to polysemy and synonymy. We extended the
original LSI for intelligent image retrieval in [30]. In our
previous approach [30, 33], a raster image was coded as a
sequence of pixels and then the coded image can be un-
derstood as a vector in anm-dimensional space, where
m denotes the number of pixels (attributes). We success-
fully used our approach especially for surveillance [34, 31]
and as an automated tool for the large-scale iris recogni-
tion problem [33]. We also showed that image retrieval
can be powered very e�ectively when the time-consuming
Singular Value Decomposition of the original LSI is re-
placed by the partial symmetric eigenproblem which can
be solved very e�ectively by using fast iterative solvers
[33]. However, our previous approach produced large non-
sparse document matrices which is why we used a novel
sparse image representation for the TRECVid 2007 image
similarity task in matching K-frames against query images.
Our novel sparse approach is based on the Fast Fourier
transform (FFT) and also on a statistically-based model
for the e�cient dimensional reduction of sparse FFT data
[32]. These reduced sparse data are analyzed by the fast
SVD-free LSI approach [33].

Although images can be represented very e�ectively by
FFT sparse coe�cients, the sparsity character of these co-
e�cients is destroyed during the LSI-based dimension re-
duction process represented by the sparse partial eigen-
problem. In our TRECVid 2007 approach, we kept the
memory limit of the decomposed data by a statistical
model of the sparse data. Each analyzed image was pro-
cessed by the following steps:

1. Representation of the image by 352� 288 = 101 376
dense \keywords". We use the approach described in
[33].

2. Generation of an FFT sparse representation of these
dense \keywords". After FFT, only 1 % of these co-
e�cients remain as non-zeros.

3. Automated reduction of the size of these FFT-based
sparse coe�cients by a statistical model of data [32].
Each image is �nally represented by only 3% \key-
words" (i.e. by only 3 % of the original number of key-

Figure 1: An example of the SVD-free LSI
keyframe similarity user-interface. The query image
(shot204 559 NRKF 2.jpg) is situated in the left upper
corner and has the similarity coe�cient 1. All of the 5
most similar images are related to the same topic. Images
are automatically sorted in the same way as it would be
sorted by a human user. More remote images are not
related to the query image at all.

words.). Moreover, these coe�cients remain sparse
[32].

4. Finally, the sparse document matrix is constructed
and analyzed by the SVD-free algorithm [33]. For
numerical results related to the video BG 38002 see
Table 1.

2.7.2 K-Space TRECVid 2007 Keyframe similar-
ity results

For TRECVid 2007 we processed each video of the test col-
lection separately by our SVD-free LSI approach, see Fig-
ure 1. This meant that we created 109 separate document
matrices, see Table 1. We used the MATLAB's sparse
matrix storage format for document matrices, for details
see Table 1. All computations were stable and fast on a
notebook with Intel(R) Pentium(R) M processor 1.86GHz
with 0.98 GB RAM. One of the reasons for this is that
singular values of TRECVid 2007 keyframes tend to de-
crease quite fast so that only 8 extremal eigenvalues and
corresponding eigenvectors of the sparse partial symmetric
eigenproblem were computed and stored in memory in all
cases. The second reason for the fast execution is that we



Properties of the document matrix A
Number of keywords:
Number of documents:
Size in memory:

3 042
6 605
76.67 MB

The SVD-Free LSI processing parameters
Dim. of the original space
Dim. of the reduced space (k)
The total time

6 605
8
30.1 secs.

Table 1: Image retrieval using the SVD-free Latent Se-
mantic Indexing method related to the BG 38002 video;
Properties of the document matrix (up) and LSI process-
ing parameters (down). Decompressing of original JPGs
onto bitmaps required 1437.73 secs (i.e. 4.56 images per
sec.).

used e�cient implementation of linear algebra algorithms
with assuming several key implementation details [33] and
also the new developed sparse approach. This new ap-
proach is very e�cient in sense of the computer memory
and computer time and also applicable for large-scale full
automated image retrieval applications. The e�ectiveness
of our novel approach was demonstrated by the large scale
image similarity task of the TRECVid 2007.

3 High-Level Feature Extraction

For our participation in the High-Level Feature Extraction
task, we created �ve runs. The majority of these runs uti-
lized some aspect of machine learning, for which we used
the WEKA toolkit [47]. All of our approaches used the
training data generated through the collaborative annota-
tion activity organized by LIG [5]. We will describe each
of our approaches below.

KSpace 1 Baseline: Our baseline approach was to take
the six global visual features, and perform early fusion to
create a single attribute vector for each K-Frame. Using
logistic regression, we classi�ed each test K-Frame for each
concept. Aggregation back to the shot level was achieved
by using MAX on the set of K-Frame predictions for that
shot, and using the highest positive prediction as the rep-
resentative for that shot.

KSpace 2 Combination of K-Space concept detectors:In
this approach, we �rst took each of the K-Space con-
cept detectors (such as ITI's waterscape detector) and us-
ing cross-validated logistic regression, examined the con-
cept's ability to detect each of the TRECVid concepts on
the training data. For example, we measured how well
TUB's face detector was at detecting people, cars, ur-
ban etc. Then for each TRECVid concept, we selected
those K-Space concepts which maximized the true positive

and false positive rate, combined these K-Space detectors
through early fusion and trained SVM's on these combi-
nations. For instance, for the `Car' feature, we combined
GET's audio features and JRS motion features to produce
our classi�er.

KSpace3 Lightweight audio visual detection: This run
experimented with producing a fast classi�cation which
made use of multiple modalities to aid in classi�cation. It
was comprised of global visual features Colour Layout and
Homogenous Texture, as well as JRS motion and GET au-
dio classi�ers. Each of these features were fused together,
then we used logistic regression to perform the classi�ca-
tion on the TRECVid concepts. Both Colour Layout and
Homogenous Texture are our most compact colour and
texture visual features.

KSpace4 Single K-Space concept detectors:For this
run, we selected a single K-Space concept detector which
matched a TRECVid concept. E.g. for the waterscape
concept we submitted the results from the QMUL water-
scape detector. Where there was not a K-Space concept
detector for a given concept, we substituted in the results
from the baseline visual classi�cation. This gives us a base-
line performance for the K-Space detectors.

KSpace6 Single feature SVM, late fusion: In our �nal
run, we �rst created individual SVM's for each of our six
global visual features. The predictions of each of these
SVM's were then late fused via a MAX operator. Classi-
�cation was at the K-Frame level with aggregation to the
shot level the same as per the baseline run.

Our results for these submissions can be found in Ta-
ble 2. The �rst observation we can make is that overall
performance is down as compared to last year and this is
probably because the data is more di�cult and challeng-
ing. Second, that our approaches this year were not as suc-
cessful as last year. Our most successful approach last year
was based on global visual features fused together through
early fusion, then classi�cation was performed through the
use of SVM's. The baseline run this year was approxi-
mately the same except that we used logistic regression
instead of SVM's. We could speculate that this approach
would have performed better if we had utilized SVMs.

The most interesting result for us was that our
lightweight multi-modal approach was our best-performing
run. This approach was also one of our quickest to train,
with classi�cation and test being achieved within 24 hours
on a dual core Pentium Xeon 5160. We believe that if we
were to extend this approach to include more visual fea-
tures, that we would see an increase in performance. This
run also emphasizes the bene�ts that can be gained from
not restricting our training data to the visual domain, but
to also incorporate audio and temporal features.



Concept median KSpace 1 KSpace 2 KSpace 3 KSpace 4 KSpace 6
1 0.028 0.015 0.004 0.008 0.000 0.022
3 0.002 0.003 0.000 0.003 0.000 0.005
5 0.061 0.046 0.023 0.079 0.015 0.030
6 0.053 0.065 0.086 0.122 0.024 0.022
10 0.008 0.001 0.000 0.001 0.001 0.005
12 0.003 0.009 0.003 0.028 0.006 0.021
17 0.167 0.151 0.151 0.149 0.021 0.157
23 0.003 0.002 0.002 0.012 0.005 0.006
24 0.005 0.012 0.007 0.008 0.002 0.001
26 0.074 0.077 0.005 0.074 0.047 0.108
27 0.051 0.035 0.035 0.021 0.003 0.019
28 0.000 0.000 0.000 0.000 0.000 0.000
29 0.022 0.045 0.002 0.009 0.006 0.013
30 0.082 0.076 0.035 0.117 0.010 0.059
32 0.026 0.018 0.018 0.036 0.016 0.026
33 0.083 0.020 0.020 0.071 0.071 0.033
35 0.028 0.002 0.012 0.015 0.012 0.013
36 0.005 0.004 0.001 0.006 0.007 0.001
38 0.035 0.015 0.002 0.018 0.002 0.071
39 0.017 0.006 0.006 0.021 0.004 0.014

average 0.039 0.030 0.021 0.040 0.013 0.031

Table 2: 2007 K-Space Feature Detection Results

4 Interactive Search

For interactive search, we de�ned our experimental objec-
tives as investigating the role of context in the user experi-
ence. We created two distinct user interfaces to investigate
the role of context, whilst keeping the functionality of bot h
systems the same. In this way we limited the scope of the
experiment to just the user interface, which is a departure
from some of the K-Space partner's earlier interactive ex-
periments where the objective was often to measure the
impact of some functionality on system performance (e.g.
the e�ect of text in retrieval performance versus visual-
only retrieval).

4.1 Experiment Design

Our experiment was designed to examine the role of con-
text in the user interface, where context can be described
as showing for a given shot, temporally adjacent shots
which a retrieval engine may or may not have ranked. An
example of the display of temporal context would be to
issue to a retrieval engine, a visual query of an anchor per-
son from a news broadcast. A temporal context response
would be to return to the user, not just matching shots
of anchor persons, but also the news story shots that they
were presenting, which would not be visually similar to the
initial query.

To examine the role of context, we designed two user in-

terfaces, known as the `shot based' system, and the `broad-
cast based' system. Both systems, apart from sharing the
same retrieval engine, also shared a common query-panel,
topic description panel and saved shot area. The major
di�erence was in the presentation of the results from the
retrieval engine.

The `shot based' system presented to the user the ranked
list of shots direct from the retrieval engine. Presented in
Figure 2 it can be seen that the ranked shots are orga-
nized left to right, top to bottom. It can be thought of as
the more traditional result display that has been used for
content-based retrieval interfaces. This interface displays
no context for any of the returned results.

The `broadcast based' system takes the idea of context
to its maximum by ranking not shots, but broadcasts. If
we were to take the assumption that the corpus for this
year will have broadcasts which are more homogenous on
a subject (i.e. a documentary may be about one major
subject, whilst in previous years a news broadcast could
be seen as containing many subjects), then ranking broad-
casts as opposed to shots appears as an interesting alter-
native. In Figure 3 we can see a horizontal line of shots in
rows across the results area. Each of these rows is a ranked
entire broadcast, with the best-matching broadcast being
the �rst row. When a user issues a query, the ranked list
of broadcasts is presented, and within each broadcast's
row the row will be centered on the highest matching shot



Figure 2: Shot-based user interface

Figure 3: Broadcast-based user interface

within that broadcast.

For the user experiment, we had two distinct groups
of users. We had two `expert' users who were intimately
involved in the design and development of the user inter-
faces and retrieval engine. These users however were not
exposed to the test collection. This allowed us to conduct
two `expert' retrieval runs, where one expert used only the
shot system, and the other expert used only the broadcast
system.

We also had 8 users from the Centre for Digital Video
Processing (CDVP) in DCU, who whilst familiar of the
concept of content-based retrieval had not been strongly
involved in the TRECVid 2007 activity. These users we
classify as non-expert users as they would not have been
aware of the details of either of the interfaces or the re-
trieval engine. Using a Latin squares arrangement, we were
able to perform two runs on each system with these users,
with each user performing 12 topics, six on each system.

4.2 Retrieval Engine

For interactive search we had seven retrieval experts avail-
able for use by the user. These included the six global vi-
sual features as identi�ed in Section 2. We also made use
of the Machine Translated (MT) Automatic Speech Recog-
nition (ASR) output [21]. The alignment of this data to
the shot boundaries was performed by ITI. The text was
then indexed by Terrier [25], with retrieval results provided
through a vector space model [36].

For our visual experts, ranking within each was handled
by the similarity measures as speci�ed by the MPEG7
speci�cation [22]. These measures for the most part are
similar to Euclidian distance.

When specifying a multi-modal query, the user can se-
lect to use any or all of these seven experts to retrieve
a response. When a query is issued, it goes to each of
the retrieval experts and a ranked list is returned. Using
a variation on DCU's query-time weight generation tech-
niques [46], these result lists are merged at query time with
weights being assigned to each expert which approximate
that experts likelihood of providing the most relevant re-
sponses to the query.

The user interfaces also allows the user to make use of
the concept detectors developed in Section 3. These con-
cepts are used as �lters by the user after a content-based
query has been issued. These �lters could be set to `pos-
itive', `negative' or `o�'. For instance, for a query about
cars, a user may set a `car' concept to `positive' and a face
concept to `negative'. To allow for false positives by the
concept detectors, when they were used by a user, they
did not alter the result list by removing non-matching ele-
ments, rather non-matching elements were greyed out but
were still visible. The intention was to allow the user to
scroll down a result list with their attention drawn to the
brighter elements. In hindsight it would have been better
if these non-matching results were removed.

4.3 Results

The results of our interactive experiment can be seen in
Table 3. Our analysis of these results has only just be-
gun, and as such any conclusions we present now are only
preliminary.

Our �rst major conclusion to draw is the di�erence in
performance between the expert and non-expert submis-
sions. This di�erence is more pronounced for the shot-
based system than the broadcast system. It certainly high-
lights the user e�ect on the results of an interactive exper-
iment.



System MAP Non-augmented
Expert Broadcast 0.167 0.138

Expert Shot 0.199 0.162
Non-Expert Broadcast 1 0.146 0.109
Non-Expert Broadcast 2 0.145 0.111

Non-Expert Shot 1 0.146 0.110
Non-Expert Shot 2 0.133 0.096

Table 3: 2007 K-Space Search Results

The second conclusion we can draw is that the examina-
tion of MAP performance is insu�cient to draw any con�-
dent conclusions of the superiority of one system over an-
other. In the case of the expert runs, the shot system had
the advantage, however for non-expert users the broadcast
system appears to have slightly better performance. We
also note at this stage though, based on our follow-up ques-
tionnaires with experiment participants, that for several of
the topics there was disagreement between what the user
thought was the objective and the assessor. Because of
this we will have to examine other metrics, such as pure
recall of the systems do get a clearer picture of system
performance, and perhaps on a per-topic basis.

Our augmentation process of user results provides a con-
sistent boost to performance across all runs, adding an ad-
ditional 0.03 and 0.04 to MAP in all cases, an average boos
of 30%. As mentioned previously, this augmentation was
the issuing of a `more like this' query using whatever saved
shots the user had selected. The consistent increase in
performance demonstrates the boost that can be achieved
using our query-time fusion techniques.

5 Conclusion

We have presented the K-Space participation in TRECVid
2007. This was our second participation in TRECVid as
a large group of research teams drawn together in an EU-
funded network, and our participation has developed on
last year with participation in interactive search. Our re-
sults for the High-Level Feature Extraction task are down
on our previous e�orts, with further examination required
to determine changes in our approach. The search task saw
a marked improvement from our previous manual search
participation, with the K-Space runs achieving good per-
formance above the median. Deeper analysis will now be
required to determine what drove user performance and
to identify areas for future improvement. Our participa-
tion has again been a positive experience for our partners
and we look forward to greater participation in next year's
TRECVid activities.
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